
Java™ Access Control Mechanisms

Anne Anderson



M/S MTV29-01
901 San Antonio Road
Palo Alto, CA 94303-4900

Java™ Access Control Mechanisms

Anne Anderson

SMLI TR-2002-108  March 2002

Abstract:

Security people are accustomed to asking "What is this person trusted to do?" Java technology started
out being concerned primarily with "What is this code trusted to do?" With the rise in distributed Java
applications and the use of Java technology in multi-user environments, applications often need to
make access control decisions based on who is making a particular request. Java 2 Standard Edition
(J2SE™) incorporates multiple access control mechanisms, including user identity based access con-
trol. These mechanisms can be used to implement a variety of security models, and can be extended to
implement additional requirements.

.

email address:
anne.anderson@sun.com



© 2002 Sun Microsystems, Inc. and Harvard University. All rights reserved. The SML Technical Report Series is published by Sun Microsystems
Laboratories, of Sun Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Java, J2ME, and J2SE are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a regis-
tered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>.All technical
reports are available online on our Website, http://research.sun.com/techrep/.



JavaTM Access Control Mechanisms

Anne Anderson

April 2002

1 Introduction

This document describes the mechanisms available in the Java 2 Standard Edition (J2SETM)
software as of version 1.4 for doing access control. It describes the way in which AccessCon-
trolExceptions are generated, the classes that are involved, and the various authorization
checking models that are supported for application writers. It also describes some ways in
which the JavaTM access control mechanisms have been extended.

2 Different mind-set

Java technology has historically had a different take on access control from what most security
people are used to. We are used to asking “What do we trust this person to do?” Java
technology started out being concerned primarily with “What do we trust this code to do?”

This paranoia about code trust is due to Java technology’s use in applets that are down-
loaded from remote locations. Allowing such code to execute on your machine without proper
controls is like inviting a stranger into your home and saying “Do whatever you want.”

With the rise in distributed Java applications and the use of Java technology in multi-
user environments, applications often need to make access control decisions based on who is
making a particular request. The JavaTM Authentication and Authorization Service (JAAS)
(introduced in the Java 2 Software Development Kit, Standard Edition, version 1.3) provided
for the first time an authenticated way of determining what person was executing code. The
JAAS mechanisms have been integrated into J2SE version 1.4, so Java applications can now
control what a particular person (or other entity) is allowed to do.

Both types of approaches will be discussed in this document.

1



SUN MICROSYSTEMS, INC. 2

3 Basic Authorization Example: AccessTest.java

To get started, here is a simple application that can exercise the basic Java access control
mechanisms. The application simply writes the letter “A” to a file.

3.1 AccessTest.java

import java.io.FileOutputStream;

public class AccessTest {

public static void main(String[] args) {

try {

FileOutputStream fos =

new FileOutputStream("/home/aha/out", false);

fos.write(’A’);

fos.close();

} catch(Exception e) {

e.printStackTrace();

}

}

}

3.2 What happens when we run AccessTest?

If we run AccessTest normally, the character “A” is written to file /home/aha/out, and we
get no exception.

$ java AccessTest

$ more /home/aha/out

A

$

If, however, we run AccessTest with a “SecurityManager” (explained below in Section
4.4), then we get an AccessControlException as follows.



SUN MICROSYSTEMS, INC. 3

$ java -Djava.security.manager AccessTest

java.security.AccessControlException: access denied

(java.io.FilePermission /home/aha/out write)

at java.security.AccessControlContext.checkPermission

(AccessControlContext.java:273)

at java.security.AccessController.checkPermission

(AccessController.java:404)

at java.lang.SecurityManager.checkPermission

(SecurityManager.java:545)

at java.lang.SecurityManager.checkWrite

(SecurityManager.java:978)

at java.io.FileOutputStream.<init>(FileOutputStream.java:172)

at java.io.FileOutputStream.<init>(FileOutputStream.java:105)

at AccessTest.main(AccessTest.java:6)

Yet again, if I create a file called “/home/aha/.java.policy” and containing the follow-
ing text:

grant codeBase "file:${user.dir}/*" {

permission java.io.FilePermission "/home/aha/*", "write";

};

and if I then run AccessTest again with a SecurityManager, the program executes
normally without any exception.

$ java -Djava.security.manager AccessTest

$ more /home/aha/out

A

$

The following sections attempt to explain what causes these behaviors.



SUN MICROSYSTEMS, INC. 4

3.3 java.io.FileOutputStream

Here is the code in java.io.FileOutputStream that was invoked when AccessTest tried
to create the new FileOutputStream1 :

public FileOutputStream(String name, boolean append)

throws FileNotFoundException

{

SecurityManager security = System.getSecurityManager();

if (security != null) {

security.checkPermission(new FilePermission(name, ‘‘write’’));

}

fd = new FileDescriptor();

if (append) {

openAppend(name);

} else {

open(name);

}

}

All access to resources in the Java platform is done through the Java API. The example
above using FileOutputStream is typical Java API code for performing access to a resource.
The Java API has been carefully written to check with the “SecurityManager”, if one
is installed, on each request by application code to access a resource. The task of the
SecurityManager is to see if the current thread of execution has permission to perform the
requested resource access.

Where the Java API supports extensibility by allowing the user to supply implementa-
tions of classes that perform resource access, it is the provider of the implementation that
is responsible for making appropriate access control checks. Such extensible classes include:
java.awt.Toolkit, java.security.Provider, and java.net.Socket. It is very important
to use implementations for such classes that make the same types of checks as the standard
Java API classes.

1This example was modified slightly to use the preferred SecurityManager checkPermission method
rather than the old-style SecurityManager checkWrite method.



SUN MICROSYSTEMS, INC. 5

4 How is an AccessControlException Generated?

Several components work together to set up the structures that allow generation of an
AccessControlException.

__________________

| Policy |

|__________________|

| |

________________________ | _______V__________

| (requested) Permission | | | ClassLoader |

|________________________| | |__________________|

| | |

________V_______________ _V_________V______

| SecurityManager | | ProtectionDomain |

|________________________| |__________________|

| | ^

________V_______________ _______ ___V___ |

| AccessController |<--| thread|<--| Class | |

|________________________| |_______| |_______| |

| |

________V_______________ __________________|___

| AccessControlContext | _|_____________________ |

|________________________| _|____________________ |_|

^ | (granted) Permission |_|

________|_______________ |______________________|

| DomainCombiner |

|________________________|

4.1 java.security.Permission

In the Java platform, sub-classes of Permission are used to represent both requested and
granted access permissions.

For example, a FilePermission object is constructed using two String parameters:
target and action. It uses the target to represent a path to a file (or to a directory
subtree), while action is used to represent specific actions that are permitted or requested
with respect to that path.

The following code creates a set of permissions that includes the rights to either read or
write to any file in the directory subtree under “/home/aha/”.

new FilePermission("/home/aha/*", "read,write");



SUN MICROSYSTEMS, INC. 6

The following constructor creates a new permission to write to the specific target file
“/home/aha/out”.

new FilePermission("/home/aha/out", "write");

Another Permission sub-class, RuntimePermission, uses just a target. The following
constructor creates a permission to set a new SecurityManager.

new RuntimePermission("setSecurityManager");

Each Permission has an “implies” method that is used to check a requested permission
against a granted permission. Each Permission sub-class knows how to determine whether
a specific requested Permission is implied by (i.e., is a subset of) a possibly more general
granted Permission.

In the case of FilePermission, the “implies” method must recognize that “*” in the
target is a “wild-card” matching any path that has the prefix “/home/aha/”. It must also
recognize that “write” is a subset of the set of actions “read,write”.

Multiple Permission objects of the same class type are stored in a
PermissionCollection object. Multiple PermissionCollection objects, each of which
may contain a different class type collection, are stored in a Permissions object (which is
actually a sub-class of PermissionCollection).

The Permission class “AllPermission” is a shortcut for indicating that all permissions
are granted.

4.2 java.security.ProtectionDomain

When a ClassLoader loads a class, it associates the class with a set of permissions granted
to that class, encapsulated in a “java.security.ProtectionDomain”. These represent
permissions specifically assigned by the ClassLoader.

1. Find location (URL) where class bytes are located.

2. Read bytes for the class itself.

3. Read any Certificate[] associated with the class bytes (via a signed JAR file or
custom mechanism).

4. Verify any signatures on class bytes using the Certificate[]. The certificates lo-
cated in file:${java.home}/lib/security/cacerts are used as trust anchors for
this verification.

5. Verify that all Certificate[] associated with the class bytes match the
Certificate[] associated with any other class already loaded from this package.



SUN MICROSYSTEMS, INC. 7

6. If class is from a package in java.*, then create the class and associate it with an
implicit System ProtectionDomain that has AllPermission. If the class is not from
a package in java.*, then continue.

7. If class is from a package that is already associated with a ProtectionDomain, create
the class, with a reference to the existing ProtectionDomain. Otherwise, continue.

8. Create a CodeSource object that encapsulates the location from which the code bytes
were loaded and any certificates associated with them:
CodeSource = new CodeSource(URL, Certificate[]).

9. Generate a heterogeneous PermissionCollection populated with statically bound per-
missions granted to this CodeSource. The source of these could be the ClassLoader

or the Policy class.

10. Create a new ProtectionDomain encapsulating the CodeSource and the associated
permissions:
ProtectionDomain =

new ProtectionDomain(CodeSource,PermissionCollection).

11. Create the new class, with a reference to the new ProtectionDomain.

4.3 java.security.Policy

The ClassLoader may invoke Policy.getPermissions(CodeSource) to obtain the set of
permissions granted to code loaded from a particular location. Policy is an abstract class.
There can be only one Policy object in effect at a time, but the object can be replaced by
code with sufficient permissions using the static method Policy.setPolicy(Policy).

A Policy implementation must have some way of associating permissions with locations
from which class code has been obtained, and possibly also with certificates with which class
code has been signed.

The default Policy implementation is in sun.security.provider.PolicyFile. This
provider implementation reads one or more text files that map permissions to locations and
signers. This is done at the time PolicyFile is created and initialized. PolicyFile creates
sets of granted Permission objects representing the permissions granted in the files. See
Appendix A for more details on policy files.

By default, the file ${JAVA_HOME}/jre/lib/security/java.security contains the lo-
cations from which PolicyFile will read policy files. The file locations are in properties
named “policy.url.*”. The default locations for policy files are:

file:${java.home}/lib/security/java.policy, and

file:${user.home}/.java.policy



SUN MICROSYSTEMS, INC. 8

The default policy file(s) can be supplemented for a particular application by using the
following option on the command line:

-Djava.security.policy[=<URL to policy file>]

If the java.security file permits it, default policy file(s) can also be overridden for a
particular application by using “==” rather than “=” as follows:

-Djava.security.policy[==<URL to policy file>]

When Policy.getPermissions(CodeSource) is invoked, PolicyFile examines its sets
of permissions for those associated with the specified CodeSource and returns them.

PolicyFile reads from the policy file(s) at startup and when the refresh() method is
invoked. Changes to the policy file(s) after the application or applet has started running do
not affect static permissions bound to a ProtectionDomain by a ClassLoader. A refresh
on Policy will, however, have an effect on the permissions granted to a ProtectionDomain

via its implies method, since this delegates to Policy.implies. Other Policy providers
may behave differently.

4.4 java.lang.SecurityManager

The SecurityManager is the gateway for all permissions checking. It contains a large number
of methods having names starting with “check”, for example “checkWrite(String file)”.
Historically, SecurityManager managed all the permissions itself, and many applications
provided custom implementations of SecurityManager. For this reason, all access control
checking must go through the SecurityManager interfaces for backwards compatibility.

In current versions of the Java platform, however, all the “check<something>” meth-
ods create an appropriate Permission object to represent the requested access and use it
to call checkPermission(Permission). SecurityManager.checkPermission then invokes
AccessController.checkPermission(Permission).

There is only one SecurityManager in effect at a time, although code with sufficient
permissions can install a new SecurityManager.

By default, Java applications do not run with a SecurityManager, but Java applets do.
The SecurityManager can be specified on the command line using the following option:

-Djava.security.manager[=<classname>]

It may also be set within the application by invoking:

System.setSecurityManager(SecurityManager);



SUN MICROSYSTEMS, INC. 9

4.5 java.security.AccessController

The AccessController.checkPermission(Permission) method takes a snapshot of the
ProtectionDomains associated with the classes in the current thread of execution. This
snapshot is called an “AccessControlContext”. The requested Permission is tested against
the Permissions in each ProtectionDomain. Every one of the ProtectionDomains in the
AccessControlContext must have the requested Permission.

Permission checking is very expensive, although the implementation has taken great
pains to make it as efficient as possible. In many cases ProtectionDomains are merged
or otherwise optimized with respect to a particular AccessControlContext. Also, the
PermissionCollections that are used by ProtectionDomains contain multiple
PermissionCollections, each containing only Permission objects of the same class type.
When ProtectionDomain.implies(Permission) is invoked, only the Permissions of the
same type as the requested Permission need to be examined.

In the AccessTest example, PolicyFile reads permissions from the default policy file,
which contains no FilePermissions at all. Therefore, the ProtectionDomain associated
with AccessTest.run() does not contain any FilePermissions, and so the request to write
is denied.

THREAD STACK ProtectionDomain PermissionCollection

======================= ================ ====================

FileOutputStream.<init> -> System Domain -> AllPermission

AccessTest.run -> /home/aha/bin Domain -> default Permissions

AccessTest.main -> /home/aha/bin Domain -> default Permissions

In this case, there are no “default Permissions”.

4.6 java.security.DomainCombiner

A DomainCombiner is a way to provide dynamic updates to the ProtectionDomains associ-
ated with an AccessControlContext.

A DomainCombiner can be associated with an AccessControlContext via one of the
AccessControlContext constructors. This AccessControlContext is then bound to the
current execution thread by using AccessController.doPrivileged(..., context). Sub-
sequent calls to one of the following methods:

AccessController.getContext

AccessController.checkPermission

cause the method DomainCombiner.combine to be invoked.
DomainCombiner.combine typically merges the ProtectionDomains from one context

with those from another, but can perform more complex operations. For example, a



SUN MICROSYSTEMS, INC. 10

DomainCombiner is used to associate a Subject identity with the ProtectionDomains of
a particular thread of execution when Subject.doAs(Subject) is called. See Section 5.4 for
more information.

5 Authorization Check Models In J2SE Version 1.4

The basic authorization security mechanisms have now been described, along with the most
common way in which they are used.

This section describes additional ways of using the authorization mechanisms provided
in J2SE version 1.4.

5.1 Access based on ProtectionDomains of current thread

This is the model already described above. A class, such as FileOutputStream, that is
invoked to perform access to some protected resource, calls one of the following methods:

SecurityManager.check<something>()

SecurityManager.checkPermission(Permission)

From these methods, the SecurityManager invokes the AccessController to check the
Permissions for each ProtectionDomain for each class on the stack in the current thread
of execution. If any class in the current thread fails to have the necessary Permission, the
AccessController generates an AccessControlException.

THREAD STACK

=======================

AccessControlContext.checkPermission(FilePermission())

----V(AccessControlContext)V----

AccessController.checkPermission(new FilePermission())

SecurityManager.checkWrite("/home/aha/out")

FileOutputStream.<init>

AccessTest.run

AccessTest.main

----^(AccessControlContext)^----

5.2 Access based on ProtectionDomain of doPrivileged caller

The AccessController has a method called doPrivileged(). When a method invokes
doPrivileged, it causes subsequent AccessController.checkPermission(Permission)



SUN MICROSYSTEMS, INC. 11

calls to create an AccessControlContext that contains only the ProtectionDomains associ-
ated with the class that called doPrivileged or those above it in the stack of the executing
thread.

THREAD STACK

===============================

AccessControlContext.checkPermission(

SecurityPermission("getProperty.keystore.type"))

----V(AccessControlContext)V----

AccessController.checkPermission(

SecurityPermission("getProperty.keystore.type"))

SecurityManager.checkPermission(

new SecurityPermission("getProperty.keystore.type"))

Security.getProperty("keystore.type")

AccessController.doPrivileged()

KeyStore.getDefaultType()

----^(AccessControlContext)^----

Application.run

Application.main

This is used when a class wishes to assert its privilege to perform a dangerous action
“safely” and “appropriately”.

For example, applications are not allowed to read system properties at will, since some
will contain privileged information. The java.security.KeyStore class, however, is trusted
to access properties safely. This class calls AccessController.doPrivileged before trying
to access properties it needs. In the example above, the KeyStore class reads a property
that it wants to make available to users: “keystore.type”, which is the default keystore type.

Another example is a ClassLoader. Whenever a method invokes a method in a previously
unreferenced class, the ClassLoader is invoked to create the new class. The ClassLoader

has to perform many actions that ordinary code is not trusted to do (such as getting policy,
instantiating new classes, creating and assigning ProtectionDomains). The ClassLoader,
however, is trusted to do these actions safely and appropriately so that system security
is not compromised, so ClassLoader calls “AccessController.doPrivileged()” prior to
performing those actions.

Note that “doPrivileged” does not give a class any permissions it does not already have.
ClassLoader and Keystore are part of the trusted java.* namespace, and thus have all
permissions already. An application class that calls “doPrivileged” will be able to exercise
only those permissions that are granted to it by the Policy that is in effect.



SUN MICROSYSTEMS, INC. 12

5.3 Access based on ProtectionDomains of another thread

When a server thread performs actions on behalf of another thread, the server thread needs
to evaluate the action in the context of the requesting thread, not its own context.

The requesting thread calls a piece of trusted code. This trusted code calls the
AccessController.getContext() method to create a copy of the requesting thread’s
AccessControlContext. The trusted code then passes the context to the server thread
along with the requested action. (A piece of trusted code must be interposed because the
requesting thread could otherwise fabricate a false AccessControlContext.)

The server thread checks the requested permissions by using this AccessControlContext
to call AccessControlContext.checkPermission().

Requester Thread Stack

=============================

accessControlContextA = AccessController.getContext()

----V(accessControlContextA)V----

ClassMethodC

ClassMethodB

ClassMethodA

----^(accessControlContextA)^----

Server Thread Stack

=============================

accessControlContextA.checkPermission(Permission)

----V(AccessControlContext)V----

ClassMethodE

ClassMethodD

----^(AccessControlContext)^----

The requested Permission must be granted in all ProtectionDomains in
accessControlContextA and in ClassMethodE and in ClassMethodD.

5.4 Access based on Subject identity

javax.security.auth.Subject represents a grouping of related information for a single
entity, such as a person. Such information includes the Subject’s identities as well as its
security-related attributes (passwords, cryptographic keys, etc.).

javax.security.auth.login.LoginContext.login() (which is similar to Pluggable
Authentication Modules PAM) can create a Subject that contains one or more authen-
ticated identities, represented as instances of java.security.Principal. This Subject



SUN MICROSYSTEMS, INC. 13

can be associated with a thread’s AccessControlContext by using one of the following
static methods:

Subject.doAs(Subject, PrivilegedAction)

Subject.doAsPrivileged(Subject, PrivilegedAction,

AccessControlContext)

Once associated with a thread’s AccessControlContext, all ProtectionDomains for that
thread will contain the Principal[] associated with the Subject (due to internal use of a
special SubjectDomainCombiner).

In J2SE version 1.4, a policy file can specify permissions for particular principals, such
that the specified principals must be in the ProtectionDomains of the AccessControlContext
being checked for access permissions. The syntax for a policy file grant entry that includes
Subject-based permissions is in Appendix A.

THREAD STACK

============

AccessControlContext.checkPermission()

----V(AccessControlContext)V----

----V(AccessControlContext + SubjectA)V----

AccessController.checkPermission()

SecurityManager.checkWrite()

ClassMethodC

ClassMethodB

----^(AccessControlContext + SubjectA)^----

Subject.doAs(SubjectA)

ClassMethodA

----^(AccessControlContext)^----

5.5 Static and dynamic policy

In J2SE version 1.4, there is a new ProtectionDomain constructor that takes a ClassLoader

and Principal[] in addition to the usual CodeSource and Permissions.
If a ProtectionDomain is created using this new constructor, then the

ProtectionDomain.implies method checks with Policy each time it is called for any per-
missions to use in addition to the static Permissions with which the ProtectionDomain

was created.



SUN MICROSYSTEMS, INC. 14

__________________

| ClassLoader |<--static granted Permissions

|__________________|

|

________V_________ ________

| ProtectionDomain |<--dynamic granted Permissions--| Policy |

|__________________| |________|

The reference implementation of Policy – PolicyFile – does NOT re-read the policy
file each time. It is possible, however, to create a custom Policy implementation that does
obtain fresh policy information on each call.

5.6 GuardedObject

A GuardedObject encapsulates a target object and a Guard object, such that access to the
target object is possible only if the Guard object allows it. Once an object is encapsulated by
a GuardedObject, access to that object is controlled by the GuardedObject.getObject()

method, which invokes the “checkGuard” method on the Guard object that is guarding
access. If access is not allowed, an exception is thrown.

Server Thread Stack

=============================

guardedObjectA = new GuardedObject(Object, Guard)

ClassMethodE

ClassMethodD

Requester Thread Stack

=============================

----V(AccessControlContext)V----

Guard.checkGuard()

Object = guardedObjectA.getObject()

ClassMethodC

ClassMethodB

ClassMethodA

----^(AccessControlContext)^----

This would be used much like the model in Section 5.3 above, but this time in cases where
the caller is unable to provide its own AccessControlContext (or other information needed)
to the resource provider for various reasons. It might also be used where more complex types
of access checks need to be performed than are supported by the AccessController, or where
the resource is not aware of access control checks.



SUN MICROSYSTEMS, INC. 15

Permission implements the Guard interface, so a Permission can be used as the Guard

for an object.

5.7 java.security.SignedObject

A SignedObject contains another serializable Object and a signature. The class contains a
“verify” method that takes a public key that should correspond to the private key used to
sign the object.

A SignedObject is used to authenticate objects and to protect their integrity. It can
provide an unmodifiable token (or more accurately, a token where any modification can be
detected), protect objects stored outside the Java runtime, or be nested to create a logical
sequence of signatures for purposes of authorization and delegation.

While this class is not an authorization mechanism in itself, it can be used as part of
authorization.

6 Extending the Java Security Model

6.1 Open Services Gateway Initiative (OSGi) dynamic permis-

sions

The Core Platform Expert Group of the Open Services Gateway Initiative (OSGi) consortium
(http://www.osgi.org) needed to be able to change the permissions associated with code
running at various service gateways. This change needed to be specified remotely and without
having to reload the code at any of the service gateways. Due to footprint constraints (the
deployment platform must be something small like Java 2 Micro Edition (J2METM), they
were not able to leverage the dynamic permissions design implemented in J2SE version 1.4.

The Java 2 security model is too restrictive for an environment such as the OSGi service
platform where multiple services from different vendors may be downloaded on demand,
without a corresponding entry in the system policy file. Also, the permissions associated
with a service’s bundle of downloaded code may need to change over time, for example, when
the bundle gets updated or when its configuration changes.

The OSGi specification defines a PermissionAdmin service that provides a standard in-
terface for assigning Java 2 permissions to bundles based on their location (codebase). This
allows for permissions to be set up before a bundle is installed on an OSGi service platform,
and for the permissions to be modified at any time during the bundle’s lifecycle. Updates to
the permissions become effective immediately and persist across restarts of the OSGi service
platform.

Java Embedded Server (JES), SUN’s implementation of the OSGi standard, implements
a special permission collection (”PermissionCollectionWrapper”) that is used by the bundle



SUN MICROSYSTEMS, INC. 16

classloader to construct a bundle’s protection domain. PermissionCollectionWrapper en-
capsulates another permission collection that contains the real permissions granted to the
bundle, and delegates all method calls (including ”implies” - which is not final!) to it.

Every time a bundle’s permissions change (by calling PermissionAdmin.setPermissions),
its new permissions are injected into the PermissionCollectionWrapper and will be used
during the next permission check that involves the bundle’s classes.

6.2 SPKIPolicy

Two researchers at Helsinki University of Technology published a paper at NDSS ’99 [3]
in which they described an implementation based on JDK1.2 that used Simple Public Key
Infrastructure (SPKI) certificates [2] rather than a static configuration file. Their goal was
both to provide dynamic policy and to distribute policy across machines.

They implemented SPKICertificate as a sub-class of the abstract Certificate class.
They wrote a Policy sub-class called SPKIPolicy. For each ProtectionDomain, SPKIPolicy
derives the PermissionCollection from valid SPKI certificate chains. The chains are rooted
in a key with alias “self” in a local KeyStore. SPKIPolicy returns a new sub-class of
PermissionCollection called “DynamicPermissions”. AccessController.implies() in-
vokes these new DynamicPermissions. DynamicPermissions asks SPKIPolicy for the re-
quested Permission.

SPKI certificates are attached to class files in a JAR file, just as regular certificates are
attached to signed JAR files. These certificates contain the set of Permissions that the
implementer of the class knows the class will need in order to run successfully. Standard
ClassLoaders already retrieve certificates attached to JAR class files and store them in the
ProtectionDomain.

A new JAR file verifier had to be written, since the SPKI certificates can’t be used to
verify a signature on the class. Instead, these certificates contain the set of Permissions
needed by the class. These certificates are encapsulated in the ProtectionDomain associated
with each class.

They expressed Java permissions in SPKI certificates as follows:

(tag (java-permission (type FilePermission)

(target /home/aha/)

(action "write"))

They parsed these permissions to create appropriate instances of Java Permission objects
just as PolicyFile parses a policy file and creates appropriate Permissions.

When a Permission is verified at runtime for a class, the certificate chain is evaluated
to see if the needed Permissions are actually granted at that time. Permissions from
certificates along the chain are intersected to obtain the resulting certificate.



SUN MICROSYSTEMS, INC. 17

The researchers stored the SPKI certificates required to build complete chains in a local
filestore as a proof-of-concept. The SPKIPolicy class knows how to look up certificates
needed to complete a chain. They published another paper suggesting storing the certificates
in the DNS directory. Tuomas Aura [1] has analysed several different algorithms for SPKI
chain reduction.



SUN MICROSYSTEMS, INC. 18

A Policy File Syntax

The syntax for a policy file to be read by sun.security.provider.PolicyFile follows.

[keystore "some_keystore_url", "keystore_type";]

<grant entries>

The “keystore” entry is used for obtaining public keys for verifying any signed classes
specified in the policy file. It must be used if there are any “signedBy” clauses in the policy
file.

A.1 grant entry

The syntax for a “grant entry” follows.

grant [signedBy "<signer_names>",]

[codeBase "<URL>",]

[principal [<principal_class_name>] "<principal_name>",]

[principal [<principal_class_name>] "<principal_name>",]

...

{

<permission entries>

};

If the “signedBy” clause is present in the header of the grant entry, then the specified
permissions are granted only to those ProtectionDomains whose classes were signed by the
specified signers.

If the “codeBase” clause is present, then the permissions are granted only to those
ProtectionDomains whose classes were obtained from the specified URL.

If “principal” clauses are present, then the permissions are granted only to an
AccessControlContext associated with a Subject containing the specified authenticated
Principal[]s.

If the <principal class name> ‘‘<principal name>’’ pair is a single quoted string,
it is treated as a KeyStore alias. The keystore is queried for an X509 Certificate associated
with the alias. If found, the principal class is automatically treated as a
javax.security.auth.x500.X500Principal, and the principal name is treated as the
subject distinguished name from the certificate. If the certificate is not found, the entire
grant entry is ignored.

A.2 permission entry

The syntax for a “permission entry” follows.



SUN MICROSYSTEMS, INC. 19

permission <permission_class_name>

"<target_name>"[, "<action>",]

[signedBy "<signer_names>"];

Typically, a “permission” clause is converted to a Permission object as follows:

new <permission_class_name>("<target_name>", "<action>");

Depending on the Permission class type, the “target name” may include wild cards
such that multiple targets match that specified. Likewise, the “action” string may contain
a list of permitted actions, any one of which will match that specified.

If the “signedBy” clause is present in a permission entry, then the
“permission class name” must be a class signed by the indicated “signer names”.



SUN MICROSYSTEMS, INC. 20

References

[1] Tuomas Aura. Comparison of graph-search algorithms for authorization verification
in delegation networks. In Proceedings of 2nd Nordic Workshop on Secure Computer
Systems, http://saturn.hut.fi/html/staff/Publications/papers/aura/aura-nordsec97.ps,
1997.

[2] C. Ellison, G. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate
theory. Experimental RFC 2693, IETF, http://www.ietf.org/rfc/rfc2693.txt, Sep 1999.

[3] Pekka Nikander and Jonna Partanen. Distributed policy management for JDK
1.2. In Proceedings of the 1999 Network and Distributed System Security Sympo-
sium, http://www.isoc.org/isoc/conferences/ndss/99/proceedings/papers/nikander.pdf,
Feb 1999.



SUN MICROSYSTEMS, INC. 21

About the Author

Anne Anderson is a Staff Engineer in the Internet Security Research Group in Sun Labs,
where she has researched problems in public key infrastructure and authorization. Prior to
joining Sun, she worked at HP/Apollo Computer and Unisys/Burroughs on operating sys-
tems and distributed system security. She has a B.A. degree in Sociology and Anthropology
from Swarthmore College, and a M.S. degree in Computer Science from San Diego State
University.


	Java[tm] Access Control Mechanisms
	Abstract
	Copyright
	1 Introduction
	2 Different mind-set
	3 Basic Authorization Example: AccessTest.java
	3.1 AccessTest.java
	3.2 What happens when we run AccessTest?
	3.3 java.io.FileOutputStream

	4 How is an AccessControlException Generated?
	4.1 java.security.Permission
	4.2 java.security.ProtectionDomain
	4.3 java.security.Policy
	4.4 java.lang.SecurityManager
	4.5 java.security.AccessController
	4.6 java.security.DomainCombiner

	5 Authorization Check Models In J2SE Version 1.4
	5.1 Access based on ProtectionDomains of current thread
	5.2 Access based on ProtectionDomain of doPrivileged caller
	5.3 Access based on ProtectionDomains of another thread
	5.4 Access based on Subject identity
	5.5 Static and dynamic policy
	5.6 GuardedObject
	5.7 java.security.SignedObject

	6 Extending the Java Security Model
	6.1 Open Services Gateway Initiative (OSGi) dynamic permissions
	6.2 SPKIPolicy

	A Policy File Syntax
	A.1 grant entry
	A.2 permission entry

	References
	About the Author


